Single-image photogrammetry for deriving tree architectural traits in mature forest stands: a comparison with terrestrial laser scanning

Kamil Kędra , Ignacio Barbeito , Mathieu Dassot , Patrick Vallet , Anna Gazda


& Key message We compared two methods for detailed individual tree measurements: single image photogrammetry (SIP), a simplified, low-cost method, and the state-of-the-art terrestrial laser scanning (TLS). Our results provide evidence that SIP can be successfully applied to obtain accurate tree architectural traits in mature forests. & Context Tree crown variables are necessary in forest modelling; however, they are time consuming to measure directly, and they are measured in many different ways. We compare two methods to obtain crown variables: laser-based and image-based. TLS is an advanced technology for three-dimensional data acquisition; SIP is a simplified, low-cost method. & Aims To elucidate differences between the methods, and validate SIP accuracy and usefulness for forest research, we investigated if (1) SIP and TLS measurements are in agreement in terms of the most widely used tree characteristics; (2) differences between the SIP traits and their TLS counterparts are constant throughout tree density and species composition; (3) tree architectural traits obtained with SIP explain differences in laser-based crown projection area (CPA), under different forest densities and stand compositions; and (4) CPA modelled with SIP variables is more accurate than CPA obtained with stem diameter-based allometric models. We also examined the correspondence between local tree densities extracted from images and from field measurements. & Methods We compared TLS and SIP in a temperate pure sessile oak and mixed with Scots pine stands, in the Orléans Forest, France. Standard major axis regression was used to establish relations between laser-based and image-based tree height and diameter at breast height. Four SIP-derived traits were compared between the levels of stand density and species composition with a t test, in terms of deviations and biases to their TLS counterparts. We created a set of linear and linear mixed models (LMMs) of CPATLS, with SIP variables. Both laser-based and image-based stem diameters were used to estimate CPA with the published allometric equations; the results were then compared with the best predictive LMM, in terms of similarity with CPATLS measurement. Local tree density extracted from images was compared with field measurements in terms of basic statistics and correlation. & Results Tree height and diameter at breast height were reliably represented by SIP (Pearson correlation coefficientsr = 0.92 and 0.97, respectively). SIP measurements were affected by the stand composition factor; tree height attained higher mean absolute deviation (1.09 m) in mixed stands, compared to TLS, than in pure stands (0.66 m); crown width was more negatively biased in mixed stands (− 0.79 m), than in pure stands (− 0.05 m); and diameter at breast height and crown asymmetry were found unaffected. Crown width and mean branch angle were key SIP explanatory variables to predict CPATLS. The model was approximately 2-fold more accurate than the CPA allometric estimations with both laser-based and image-based stem diameters. SIP-derived local tree density was similar to the field-measured density in terms of mean and standard deviation (9.6 (3.5) and 9.4 (3.6) trees per plot, respectively); the correlation between both density measures was significantly positive (r = 0.76). & Conclusion SIP-derived variables, such as crown width, mean branch angle, branch thickness, and crown asymmetry, were useful to explain tree architectural differences under different densities and stand compositions and may be implemented in many forest research applications. SIP may also provide a coarse measure of local competition, in terms of number of neighbouring trees. Our study provides the first test in mature forest stands, for SIP compared with TLS.
Author Kamil Kędra (FoF)
Kamil Kędra,,
- Faculty of Forestry
, Ignacio Barbeito
Ignacio Barbeito,,
, Mathieu Dassot
Mathieu Dassot,,
, Patrick Vallet
Patrick Vallet,,
, Anna Gazda (FoF / IoEaS / DBL)
Anna Gazda,,
Journal seriesAnnals of Forest Science, ISSN 1286-4560, e-ISSN 1297-966X, (N/A 140 pkt)
Issue year2019
Publication size in sheets0.6
Keywords in EnglishTree architecture, Branching system, Variable selection, Temperate pure and mixed forests, Remote sensing, Allometry
ASJC Classification1107 Forestry; 2303 Ecology
Languageen angielski
Score (nominal)140
Score sourcejournalList
Publication indicators WoS Citations = 0; Scopus SNIP (Source Normalised Impact per Paper): 2018 = 1.206; WoS Impact Factor: 2018 = 2.633 (2) - 2018=2.555 (5)
Citation count*6 (2020-03-28)
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?