Species–area relationships in continuous vegetation: Evidence from Palaearctic grassland

Jürgen Dengler , Thomas J. Matthews , Manuel J. Steinbauer , Sebastian Wolfrum , Steffen Boch , Alessandro Chiarucci , Timo Conradi , Iwona Dembicz , Corrado Marcenò , Itziar García‐Mijangos , Arkadiusz Nowak , David Storch , Werner Ulrich , Juan Antonio Campos , Laura Cancellieri , Giampiero Ciaschetti , Pieter De Frenne , Jiri Dolezal , Christian Dolnik , Franz Essl , Edy Fantinato , Goffredo Filibeck , John-Arvid Grytnes , Riccardo Guarino , Behlül Güler , Ewelina Klichowska , Łukasz Kozub , Michael Manthey , Anne Mimet , Alireza Naqinezhad , Christian Pedersen , Robert K. Peet , Vincent Pellissier , Remigiusz Pielech , Giovanna Potenza , Leonardo Rosati , Massimo Terzi , Orsolya Valkó , Denys Vynokurov , Hannah White , Manuela Winkler , Idoia Biurrun


Species–area relationships (SARs) are fundamental scaling laws in ecology although their shape is still disputed. At larger areas, power laws best represent SARs. Yet, it remains unclear whether SARs follow other shapes at finer spatial grains in continuous vegetation. We asked which function describes SARs best at small grains and explored how sampling methodology or the environment influence SAR shape. Location. Palaearctic grasslands and other non‐forested habitats. Taxa. Vascular plants, bryophytes and lichens. Methods. We used the GrassPlot database, containing standardized vegetation‐plot data from vascular plants, bryophytes and lichens spanning a wide range of grassland types throughout the Palaearctic and including 2,057 nested‐plot series with at least seven grain sizes ranging from 1 cm2 to 1,024 m2. Using nonlinear regression, we assessed the appropriateness of different SAR functions (power, power quadratic, power breakpoint, logarithmic, Michaelis–Menten). Based on AICc, we tested whether the ranking of functions differed among taxonomic groups, methodological settings, biomes or vegetation types. Results. The power function was the most suitable function across the studied taxonomic groups. The superiority of this function increased from lichens to bryophytes to vascular plants to all three taxonomic groups together. The sampling method was highly influential as rooted presence sampling decreased the performance of the power function. By contrast, biome and vegetation type had practically no influence on the superiority of the power law. Main conclusions. We conclude that SARs of sessile organisms at smaller spatial grains are best approximated by a power function. This coincides with several other comprehensive studies of SARs at different grain sizes and for different taxa, thus supporting the general appropriateness of the power function for modelling species diversity over a wide range of grain sizes. The poor performance of the Michaelis–Menten function demonstrates that richness within plant communities generally does not approach any saturation, thus calling into question the concept of minimal area.
Author Jürgen Dengler
Jürgen Dengler,,
, Thomas J. Matthews
Thomas J. Matthews,,
, Manuel J. Steinbauer
Manuel J. Steinbauer,,
, Sebastian Wolfrum
Sebastian Wolfrum,,
, Steffen Boch
Steffen Boch,,
, Alessandro Chiarucci
Alessandro Chiarucci,,
, Timo Conradi
Timo Conradi,,
, Iwona Dembicz
Iwona Dembicz,,
, Corrado Marcenò
Corrado Marcenò,,
, Itziar García‐Mijangos
Itziar García‐Mijangos,,
et al.`
Journal seriesJournal of Biogeography, ISSN 0305-0270, e-ISSN 1365-2699, (N/A 140 pkt)
Issue year2020
Publication size in sheets0.7
Keywords in Englishlogarithmic function, Michaelis–Menten function, minimal area, nested‐plot sampling, nonlinear regression, Palaearctic grassland, plant biodiversity, power law, scaling law, species–area relationship (SAR)
ASJC Classification1105 Ecology, Evolution, Behavior and Systematics; 2303 Ecology
URL https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbi.13697
Languageen angielski
LicenseJournal (articles only); author's original; Uznanie Autorstwa (CC-BY); after publication
Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands of 28-01-2020
2,69 MB
Score (nominal)140
Score sourcejournalList
Publication indicators WoS Citations = 0; Scopus SNIP (Source Normalised Impact per Paper): 2018 = 1.511; WoS Impact Factor: 2018 = 3.884 (2) - 2018=4.639 (5)
Citation count*
Additional fields
FinansowanieState Fund for Fundamental Research of Ukraine, Grant/Award Number: Ф83/53427; Eusko Jaurlaritza, Grant/Award Number: IT936‐16; Slovenská Akadémia Vied, Grant/Award Number: VEGA 02/0095/19; Narodowe Centrum Nauki, Grant/Award Number: 2017/27/B/NZ8/00316 and DEC‐2013/09/N/NZ8/03234; Center for International Scientific Studies and Collaboration (CISSC), Grant/Award Number: NA; Eurasian Dry Grassland Group (EDGG) and the International Association for Vegetation Science (IAVS), Grant/Award Number: NA; Grantová Agentura České Republiky, Grant/Award Number: GA 17‐19376S; MIUR initiative “Department of excellence”, Grant/Award Number: Law 232/2016; Bavarian Research Alliance, Grant/Award Number: BayIntAn_ UBT_2017_58; Bayreuth Center of Ecology and Environmental Research (BayCEER), Grant/Award Number: NA
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Are you sure?