On the reflexivity of subspaces of Toeplitz operators on the hardy space on the upper half-plane

Wojciech Młocek , Marek Ptak

Abstract

The reflexivity and transitivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane are investigated. The dichotomic behavior (transitive or reflexive) of these subspaces is shown. It refers to the similar dichotomic behavior for subspaces of Toeplitz operators on the Hardy space on the unit disc. The isomorphism between the Hardy spaces on the unit disc and the upper half-plane is used. To keep weak* homeomorphism between $L^\infty$ spaces on the unit circle and the real line we redefine the classical isomorphism between $L^1$ spaces.
Author Wojciech Młocek (FoEEaLS / DoAM)
Wojciech Młocek,,
- Department of Applied Mathematics
, Marek Ptak (FoEEaLS / DoAM)
Marek Ptak,,
- Department of Applied Mathematics
Journal seriesCzechoslovak Mathematical Journal, ISSN 0011-4642, (A 15 pkt)
Issue year2013
Vol63
No2
Pages421-434
Publication size in sheets0.65
Keywords in Englishreflexive subspace, transitive subspace, Toeplitz operator, Hardy space, upper half-plane
DOIDOI:10.1007/s10587-013-0026-0
URL http://link.springer.com/content/pdf/10.1007%2Fs10587-013-0026-0.pdf
Internal identifierWIŚIG/2013/120
Languageen angielski
Score (nominal)15
ScoreMinisterial score = 15.0, 26-07-2017, ArticleFromJournal
Ministerial score (2013-2016) = 15.0, 26-07-2017, ArticleFromJournal
Publication indicators WoS Citations = 3
Citation count*
Additional fields
Oświadczenie o afiliacjiAutor M.Ptak ma dwie afiliacje w publikacji. Ta publikacja jest przypisana innej uczelni, tzn. Uniwersytetowi Pedagogicznemu w Krakowie
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?